Dual counterbalance assembly with cross-port relief and shuttle

Function

Function for YCCW
Port Designators [ + ]
Modifiers Ports
B, B/S Ports V1 & V2: 3/8" NPTF; Port S: SAE 4;
C, C/S Ports V1 & V2: 1/2" NPTF; Port S: SAE 4;
J, J/S Ports V1 & V2: SAE 8; Port S: SAE 4;
K, K/S Ports V1 & V2: SAE 10; Port S: SAE 4;
U, U/S Ports V1 & V2: 3/8" BSPP; Port S: 1/4" BSPP;
V, V/S Ports V1 & V2: 1/2" BSPP; Port S: 1/4" BSPP;
Technical Features [ + ]

This assembly provides 3 functions, a) dual cross-pilot load holding between motor ports M1 and M2, b) cross-port relief protection between ports M1 and M2 and c) load-sense shuttle between valve ports V1 and V2.

  • Counterbalance valves should be set at least 1.3 times the maximum load induced pressure.
  • Turn adjustment clockwise to decrease setting of the counterbalance valve and release load.
  • Backpressure at port 2 of the counterbalance valve adds to the effective relief setting at a ratio of 1 plus the pilot ratio times the backpressure.
  • Counterbalance valve reseat exceeds 85% of set pressure when the valve is standard set. Settings lower than the standard set pressure may result in lower reseat percentages.
  • The assembly's cross-ported direct acting relief valves exhibit rapid response characteristics that minimize pressure overshoot and also provide low reseat leakage (less than 5 drops/min (0,3 cc/min) @ 85% of cracking pressure).
  • Hydraulic motors leak. Therefore a mechanical brake is recommended to positively lock any stopped live load.
Technical Data [ + ]
Capacity 15 gpm60 L/min.
Body Type Motor mountMotor mount
Interface Eaton/Char-Lynn H & SEaton/Char-Lynn H & S
FAQs [ + ]

There are exactly 250 Sun drops in a cubic inch or 15 in a cc.

Reasons to anodize:

  • To increase corrosion resistance. Sun uses 6061-T651 aluminum. It is one of the most corrosion resistant aluminum alloys there is. Whether or not anodizing improves the corrosion resistance of 6061 aluminum is debatable. We have yet to have a manifold returned because of corrosion.
  • Appearance (color). The 2 colors that would appeal to Sun would be blue or black. Unfortunately these are the colors that are hardest to do consistently.
  • To provide a hard wear surface. Sun does not make parts-in-body valves. The manifold is just plumbing. We don't need a wear surface.
  • Because everyone else does it. Bad reason. 

Reasons to not anodize:

  • Cost. It's another process.
  • Logistics. When you make tens of thousands of manifolds a month and you anodize hundreds, it's a problem. Consistency. See above.
  • Stamping. After a body is anodized you cannot do any more stamping without making a mess.
    Inspection. Have you ever tried to look for burrs in a black anodized body? It's the old blackboard factory at night scenario.
  • Torque. You will experience an increase in breakaway torque when removing items from an anodized manifold.
  • Fatigue life. This is the best reason to not anodize. Fatigue failure is a very complex phenomenon. What it takes to initiate a crack is difficult to predict. What it takes to propagate a crack is readily defined. Anodizing produces a very thin, very hard, and very brittle surface on aluminum. The first time you pressurize an anodized aluminum manifold you have initiated fatigue cracks. Whether or not the stress is enough to propagate the cracks is a matter of pressure and manifold geometry. Anodizing an aluminum manifold grossly reduces the fatigue life by anywhere from 20% to 50%.

Direct-acting valves are used to prevent over pressure, and pilot-operated valves are used to regulate pressure. If you are unsure, use a direct-acting valve. Sun's direct acting valves are very fast, dirt tolerant, stable, and robust. Sun's pilot-operated valves are moderately fast, they have a low pressure rise vs. flow curve, and they are easy to adjust.

Notes [ + ]
  • Important: Carefully consider the maximum system pressure. The pressure rating of the manifold is dependent on the manifold material, with the port type/size a secondary consideration. Manifolds constructed of aluminum are not rated for pressures higher than 3000 psi (210 bar), regardless of the port type/size specified.
Additional Resources [ + ]